
A Review on Query Result Caching using dynamic
data cache

M. A. Ramteke, Prof. S. S. Dhande, Prof. H. R. Vyawahare

Sipna College of Engineering and Technology, Amravati,
Maharashtra, India

Abstract— Backend database system is often the performance
bottleneck when running applications. The need for speed is
increasing rapidly so we must be able to handle large amount
of data in small time units like seconds or even milliseconds.
The main problem that affects this to be fulfilled is the
intensive usage of database through unnecessary, repetitive
calls. A common approach to scale the database component is
query result caching. Caching is a technique that can
drastically improve the performance of any database
application. Edge application directs its database requests to a
database cache, rather than the backend DBMS. A solution for
our performance problem and in gaining more speed in our
application is to cache query results and where is possible our
dynamic content.

Keywords— data cache, caching, cached query result, cache
replacement.

I. INTRODUCTION

 The cache as a component improves performance by
storing data such that future requests for that data can be
served faster. The data that is stored within a cache might
be query results that have been computed earlier. If
requested data is contained in the cache (cache hit), this
request can be served by simply reading the cache, which is
comparably faster. Web search engines serve millions of
query requests per day. Caching query results is one of the
most crucial mechanisms to cope with such a demanding
load. An efficient storage model can be used to cache
query results.
 The performance of a caching system depends on the
underlying caching data structure, cache eviction strategy,
and cache utilization policy.
 Data cache is a standalone database engine that
maintains previous query results. When a piece of data is
requested from an application, first is searched inside the
cache and if found is automatically returned to the client,
otherwise is loaded form database, cached and returned to
the client.
 Caching popular queries and reusing results of
previously computed queries is one important query
optimization technique. Popular search engines receive
millions of queries per day, and for each query, return a
result page to the user who submitted the query. The user
may request additional result pages for the same query,
submit a new query, or quit searching altogether. An
efficient scheme for caching query result pages may enable
search engines to lower their response time.

II. LITERATURE REVIEW AND RELATED WORK

 Many applications fail to be efficient due to a huge
number of unnecessary database calls, network traffic
between the application itself and the database server,
retrieving and loading the results for same request from
server. Qiong Luo, Jeffrey F. Naughton, Rajasekar
Krishnamurthy, Pei Cao and Yunrui Li, proposed a new
collaboration scheme between an active proxy and a
database web server [1].

 The backend database system is often the
performance bottleneck when running applications. A
common approach to scale the database component is query
result caching, but it faces the challenge of maintaining a
high cache hit rate while efficiently ensuring cache
consistency as the database is updated.

 Many online business applications today are being
developed and deployed on multi-tier environments
involving browser-based clients, web application servers
and backend databases. The dynamic nature of these
applications necessitates generating web pages on-demand,
making middle-tier database caching an effective approach
to achieve high scalability and performance. [2]. Caching is
critical for improving the performance of many middleware
applications. In order for an application to benefit from
caching, it must repeatedly use data which is expensive to
calculate or retrieve.

 This limitation can be overcome by dynamic data
cache. It saves the results of queries that are submitted to
the database system. A cache hit is recognized and serviced
from the cache if a query is an identical match to a
previously submitted query. The advantage of such caching
is that it is simple and it caters to access scenarios where the
same query is likely to be submitted over and over.

 A database cache feature is incorporated in DB2
UDB by modifying the engine code and leveraging existing
database functionality. This allows us to take advantage of
DB2's sophisticated query processing power for database
caching [3]. As a result, the user queries can be executed at
either the local database cache or the remote backend server,
or more importantly, the query can be partitioned and then
distributed to both databases for cost optimum execution.

 By caching data, the application only needs to
retrieve the data once. Whenever the data is needed after it
has been cached, the application can retrieve it from a
remote location. Database caching at proxy servers enables
dynamic content to be generated at the edge of the network,

M. A. Ramteke et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 935-937

www.ijcsit.com 935

thereby improving the scalability and response time of web
applications.

 The scale of deployment of edge servers coupled
with the rising costs of their administration demand that
such caching middleware be adaptive and self managing [4].
To achieve this, a cache must be dynamically populated and
pruned based on the application query for such a cache
maintains a large number previous query results.

 K. Amiri, R. Tewari, S. Sprenkle, and S.
Padmanabhan proposed a cache that often rely on update
propagation protocols to maintain consistency with back
end database system. They focused on update propagation
form backend database to the edge server cache [5].

 Per-Ake Larson, Jonathan Goldstein, Jingren Zhou
prototyped MTCache, a mid-tier database cache solution for
Microsoft SQL Server in which mid-tier database caching is
carried out, that is, running a local database server on each
application server that caches data from the backend
database. This allows queries to be computed locally [6].

 A persistent and self-managing edge-of-network data
cache is dynamically populated based on the application
query stream and stored locally in a persistent database [7].
DBProxy, an edge-of-network semantic data cache for web
applications adapt to changes in the workload [8].

 C. Mohan presented an overview of caching
technologies for web applications [9].

Ferdinand, the first proxy-based cooperative query result
cache with fully distributed consistency management. To
maintain a high cache hit rate, Ferdinand uses both a local
query result cache on each proxy server and a distributed
cache [10].

III. CACHE REPLACEMENT

The following cache replacement algorithm can be used
to replace the cached query results.

a. FIFO (First In First Out):
 Result sets are added to the cache as they are

generated, when the cache is full, items are ejected in the
order they were added.

b. Least Recently Used (LRU):
 Result sets are added to the cache as they are

generated; when the cache is full, the least recently used
item is ejected. There is a need to have a replacement
algorithm to purge entries from a cache when the boundary
conditions are reached. For example, reaching the
maximum number of entries allowed. One such algorithm is
LRU (Least Recently Used). In this algorithm cache entries
which have not been accessed recently will be replaced. If
we are writing your own cache, one approach is to maintain
a timestamp at which the entry was inserted and select the
entry with the oldest timestamp to be removed. This policy
replaces the intermediate result that has been requested least
recently. The policy is based on the same principle as page
replacement policies in operating systems. Every cached
item is associated with a time stamp that stores the last time
the item was accessed by a query, since the data server
started execution. The item with the minimum time stamp is
replaced when a new item must be stored in a full cache.

c. Most Recently Used (MRU):
 It discards, in contrast to LRU, the most recently used
items first. Many times during the usage of an algorithm, a
list of the last n most recently used results comes to be
useful. Sometimes, this is referred to the least recently used
(LRU) cache, but this simply implies elements that fall out
of the list (i.e. the least recently used ones). MRU algorithm
is most useful in situations where the older an item is the
more likely it is to be accessed.

IV. APPLICATIONS

 To improve web search engines performance.
Performance and scalability are critical to web search
engines. It must be ensured not only that our web
search engines always performs well, but that it will
continue to do so as the user load increases.

 Caching technology can play in providing real-time
data access, distributed applications.

 Popular search engines receive millions of queries per
day, and for each query, it returns a result page to the
user who submitted the query. The user may request
additional result pages for the same query, submit a
new query, or quit searching altogether. An efficient
scheme for caching query result pages may enable
search engines to lower their response time.

V. CONCLUSION

 Caching query results increases the scalability of the
back-end database by serving a large part of the queries at
the dynamic data cache. This reduces average response time
when the back-end server is experiencing high load. It
offloads origin backend system and provides better client
response time.

REFERENCES

[1] Qiong Luo, Jeffrey F. Naughton, Rajasekar Krishnamurthy, Pei Cao
and Yunrui Li. “Active Query Caching for Database Web Servers”,
D. Suciu and G. Vossen (Eds.): WebDB 2000, LNCS 1997, pp.
92-104, 2001. Springer - Verlag Berlin Heidelberg 2001.

[2] L. Degenaro, A. Iyengar, I. Lipkind, and I. Rouvellou, “A
middleware systemwhich intelligently caches query results”, In
Middleware Conference, pages 24–44, 2000.

[3] M. Altinet, Q. Luo, S. Krishnamurthy, C. Mohan, H. Pirahesh, B. G.
Lindsay, H. Woo, L. Brown, “DBCache: Database Caching for Web
Application Servers”, 612, SIGMOD 2002.

[4] K. Amiri, S. Park, R. Tewari, and S. Padmanabhan, “DBProxy: A
self managing edge-of-network data cache”. Technical Report
RC22419, IBM Research, 2002.

[5] K. Amiri, R. Tewari, S. Sprenkle, and S. Padmanabhan, “Scalable
consistency maintenance for edge query caches”, F.Douglis and B.D.
Davison (eds.),Web Content Caching and Distribution, 79-70, 2004.

[6] Per-Ake Larson, Jonathan Goldstein, Jingren Zhou, “Transparent
Mid-Tier Database Caching in SQL Server”, June 9-12, 2003, San
Diego, CA. 2003 ACM 1-58113-634-X/03/06 SIGMOD 2003.

[7] K. Amiri, R. Tewari, S. Park, and S. Padmanabhan, “On space
management in a dynamic edge data cache”. In WebDB Conference
(Informal Proceedings), 2002.

[8] K. Amiri, S. Park, R. Tewari, and S. Padmanabhan, “DBProxy: A
dynamic data cache for Web applications”, In Proc. International
Conference on Data Engineering, IEEE Computer Society 2003.

[9] C. Mohan, “Caching Technologies for Web Applications” Available
at almanden.ibm.com/u/mohan/Caching_VLDB2001.pdf ,
Rome ,VLDB 2001.

[10] Charles Garrod, Amit Manjhi, Anastasia Ailamaki, Bruce Maggs,
Todd Mowry, Christopher Olston, Anthony Tomasic, “Scalable

M. A. Ramteke et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 935-937

www.ijcsit.com 936

Query Result Caching for Web Applications", VLDB Endowment,
ACM. VLDB `08, August 2430, 2008.

[11] Q. Luo, S. Krishnamurthy, C. Mohan, H. Pirahesh, H. Woo, B. G.
Lindsay, J. F. Naughton, “Middle-Tier Database Caching for e-
Business”, 600-611,SIGMOD 2002.

[12] Laurentiu CIOVICA Academy of Economic Studies, Bucharest,
Romania, “Open Source Caching Solutions”, Open Source Science
Journal Vol. 2, No.3, 2010.

[13] K. Amiri, S. Park, R. Tewari, and S. Padmanabhan, “Scalable
template-based query containment checking for web semantic
caches”, In ICDE Conference, 2003.

[14] Hemant Kumar Mehta, Priyesh Kanungo, Manohar Chandwani
“Dependency Free Distributed Database Caching for Web
Applications and Web Services” 2nd International Conference and
workshop on Emerging Trends in Technology (ICWET) 2011.

[15] Swaminathan Sivasubramanian, Guillaume Pierre, and Maarten van
Steen, Gustavo the Alonso, “Analysis of Caching and Replication
Strategies for Web Applications” Published by IEEE Computer
Society IEEE 2007.

M. A. Ramteke et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 935-937

www.ijcsit.com 937

